新型石墨烯基纳米结构的制备及功能化设计-自主发布-资讯-生物在线

新型石墨烯基纳米结构的制备及功能化设计

作者:上海阿拉丁生化科技股份有限公司 2022-11-21T14:29 (访问量:2784)

p>

2.Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O?Neill A, Boland C, Lotya M, Istrate OM, King P, et al. 2014. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature Mater. 13(6):624-630. https://doi.org/10.1038/nmat3944

3.Novoselov KS, Fal?ko VI, Colombo L, Gellert PR, Schwab MG, Kim K. 2012. A roadmap for graphene. Nature. 490(7419):192-200. https://doi.org/10.1038/nature11458

4.Ferrari AC, Bonaccorso F, Fal'ko V, Novoselov KS, Roche S, Bøggild P, Borini S, Koppens FHL, Palermo V, Pugno N, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale. 7(11):4598-4810. https://doi.org/10.1039/c4nr01600a

5.Palermo V. 2013. Not a molecule, not a polymer, not a substrate? the many faces of graphene as a chemical platform. Chem. Commun.. 49(28):2848. https://doi.org/10.1039/c3cc37474b

6.Schlierf A, Samorì P, Palermo V. 2014. Graphene?organic composites for electronics: optical and electronic interactions in vacuum, liquids and thin solid films. J. Mater. Chem. C. 2(17):3129. https://doi.org/10.1039/c3tc32153c

7.Coleman JN. 2013. Liquid Exfoliation of Defect-Free Graphene. Acc. Chem. Res.. 46(1):14-22. https://doi.org/10.1021/ar300009f

8.Schlierf A, Yang H, Gebremedhn E, Treossi E, Ortolani L, Chen L, Minoia A, Morandi V, Samorì P, Casiraghi C, et al. 2013. Nanoscale insight into the exfoliation mechanism of graphene with organic dyes: effect of charge, dipole and molecular structure. Nanoscale. 5(10):4205. https://doi.org/10.1039/c3nr00258f

9.Kozhemyakina NV, Englert JM, Yang G, Spiecker E, Schmidt CD, Hauke F, Hirsch A. 2010. Non-Covalent Chemistry of Graphene: Electronic Communication with Dendronized Perylene Bisimides. Adv. Mater. 22(48):5483-5487. https://doi.org/10.1002/adma.201003206

10.Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB. 2010. Structural evolution during the reduction of chemically derived graphene oxide. Nature Chem. 2(7):581-587. https://doi.org/10.1038/nchem.686

11.Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan KA, Celik O, Mastrogiovanni D, Granozzi G, Garfunkel E, Chhowalla M. 2009. Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films. Adv. Funct. Mater.. 19(16):2577-2583. https://doi.org/10.1002/adfm.200900166

12.Park S, Ruoff RS. 2009. Chemical methods for the production of graphenes. Nature Nanotech. 4(4):217-224. https://doi.org/10.1038/nnano.2009.58

13.Panzavolta S, Bracci B, Gualandi C, Focarete ML, Treossi E, Kouroupis-Agalou K, Rubini K, Bosia F, Brely L, Pugno NM, et al. 2014. Structural reinforcement and failure analysis in composite nanofibers of graphene oxide and gelatin. Carbon. 78566-577. https://doi.org/10.1016/j.carbon.2014.07.040

14.Zhao X, Xu Z, Zheng B, Gao C. 2013. Macroscopic assembled, ultrastrong and H2SO4-resistant fibres of polymer-grafted graphene oxide. Sci Rep. 3(1): https://doi.org/10.1038/srep03164

15.Schopp S, Thomann R, Ratzsch K, Kerling S, Altstädt V, Mülhaupt R. 2014. Functionalized Graphene and Carbon Materials as Components of Styrene-Butadiene Rubber Nanocomposites Prepared by Aqueous Dispersion Blending. Macromol. Mater. Eng.. 299(3):319-329. https://doi.org/10.1002/mame.201300127

16.Borini S, White R, Wei D, Astley M, Haque S, Spigone E, Harris N, Kivioja J, Ryhänen T. 2013. Ultrafast Graphene Oxide Humidity Sensors. ACS Nano. 7(12):11166-11173. https://doi.org/10.1021/nn404889b

17.Prezioso S, Perrozzi F, Giancaterini L, Cantalini C, Treossi E, Palermo V, Nardone M, Santucci S, Ottaviano L. 2013. Graphene Oxide as a Practical Solution to High Sensitivity Gas Sensing. J. Phys. Chem. C. 117(20):10683-10690. https://doi.org/10.1021/jp3085759

18.Liscio A, Veronese GP, Treossi E, Suriano F, Rossella F, Bellani V, Rizzoli R, Samorì P, Palermo V. 2011. Charge transport in graphene?polythiophene blends as studied by Kelvin Probe Force Microscopy and transistor characterization. J. Mater. Chem. 21(9):2924. https://doi.org/10.1039/c0jm02940h

19.Rapino S, Treossi E, Palermo V, Marcaccio M, Paolucci F, Zerbetto F. Playing peekaboo with graphene oxide: a scanning electrochemical microscopy investigation. Chem. Commun.. 50(86):13117-13120. https://doi.org/10.1039/c4cc06368f

20.Liu Z, Parvez K, Li R, Dong R, Feng X, Müllen K. 2015. Transparent Conductive Electrodes from Graphene/PEDOT:PSS Hybrid Inks for Ultrathin Organic Photodetectors. Adv. Mater. 27(4):669-675. https://doi.org/10.1002/adma.201403826

21.Palermo V, Samorì P. 2007. Molecular Self-Assembly across Multiple Length Scales. Angew. Chem. Int. Ed. 46(24):4428-4432. https://doi.org/10.1002/anie.200700416

22.Xia ZY, Pezzini S, Treossi E, Giambastiani G, Corticelli F, Morandi V, Zanelli A, Bellani V, Palermo V. 2013. Graphene: The Exfoliation of Graphene in Liquids by Electrochemical, Chemical, and Sonication-Assisted Techniques: A Nanoscale Study (Adv. Funct. Mater. 37/2013). Adv. Funct. Mater. 23(37):4756-4756. https://doi.org/10.1002/adfm.201370188

23.Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS. 2012. Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chem. Rev. 112(11):6156-6214. https://doi.org/10.1021/cr3000412

24.Englert JM, Röhrl J, Schmidt CD, Graupner R, Hundhausen M, Hauke F, Hirsch A. 2009. Soluble Graphene: Generation of Aqueous Graphene Solutions Aided by a Perylenebisimide-Based Bolaamphiphile. Adv. Mater. 21(42):4265-4269. https://doi.org/10.1002/adma.200901578

25.Backes C, Schmidt CD, Rosenlehner K, Hauke F, Coleman JN, Hirsch A. 2010. Nanotube Surfactant Design: The Versatility of Water-Soluble Perylene Bisimides. Adv. Mater.. 22(7):788-802. https://doi.org/10.1002/adma.200902525

26.Yang H, Hernandez Y, Schlierf A, Felten A, Eckmann A, Johal S, Louette P, Pireaux J, Feng X, Mullen K, et al. 2013. A simple method for graphene production based on exfoliation of graphite in water using 1-pyrenesulfonic acid sodium salt. Carbon. 53357-365. https://doi.org/10.1016/j.carbon.2012.11.022

27.Parviz D, Das S, Ahmed HST, Irin F, Bhattacharia S, Green MJ. 2012. Dispersions of Non-Covalently Functionalized Graphene with Minimal Stabilizer. ACS Nano. 6(10):8857-8867. https://doi.org/10.1021/nn302784m

28.Su Q, Pang S, Alijani V, Li C, Feng X, Müllen K. 2009. Composites of Graphene with Large Aromatic Molecules. Adv. Mater.. 21(31):3191-3195. https://doi.org/10.1002/adma.200803808

29.An X, Butler TW, Washington M, Nayak SK, Kar S. 2011. Optical and Sensing Properties of 1-Pyrenecarboxylic Acid-Functionalized Graphene Films Laminated on Polydimethylsiloxane Membranes. ACS Nano. 5(2):1003-1011. https://doi.org/10.1021/nn102415c

30.Geng J, Kong B, Yang SB, Jung H. 2010. Preparation of graphene relying on porphyrin exfoliation of graphite. Chem. Commun.. 46(28):5091. https://doi.org/10.1039/c001609h

31.Xu Y, Zhao L, Bai H, Hong W, Li C, Shi G. 2009. Chemically Converted Graphene Induced Molecular Flattening of 5,10,15,20-Tetrakis(1-methyl-4-pyridinio) porphyrin and Its Application for Optical Detection of Cadmium (II) Ions. J. Am. Chem. Soc.. 131(37):13490-13497. https://doi.org/10.1021/ja905032g

32.Xu Y, Liu Z, Zhang X, Wang Y, Tian J, Huang Y, Ma Y, Zhang X, Chen Y. 2009. A Graphene Hybrid Material Covalently Functionalized with Porphyrin: Synthesis and Optical Limiting Property. Adv. Mater.. 21(12):1275-1279. https://doi.org/10.1002/adma.200801617

33.Tu W, Lei J, Zhang S, Ju H. 2010. Characterization, Direct Electrochemistry, and Amperometric Biosensing of Graphene by Noncovalent Functionalization with Picket-Fence Porphyrin. Chem. Eur. J.. 16(35):10771-10777. https://doi.org/10.1002/chem.201000620

34.Geng J, Jung H. 2010. Porphyrin Functionalized Graphene Sheets in Aqueous Suspensions: From the Preparation of Graphene Sheets to Highly Conductive Graphene Films. J. Phys. Chem. C. 114(18):8227-8234. https://doi.org/10.1021/jp1008779

35.Zhang X, Huang Y, Wang Y, Ma Y, Liu Z, Chen Y. 2009. Synthesis and characterization of a graphene? C60 hybrid material. Carbon. 47(1):334-337. https://doi.org/10.1016/j.carbon.2008.10.018

36.Melucci M, Treossi E, Ortolani L, Giambastiani G, Morandi V, Klar P, Casiraghi C, Samorì P, Palermo V. 2010. Facile covalent functionalization of graphene oxide using microwaves: bottom-up development of functional graphitic materials. J. Mater. Chem.. 20(41):9052. https://doi.org/10.1039/c0jm01242d

37.Melucci M, Durso M, Zambianchi M, Treossi E, Xia Z, Manet I, Giambastiani G, Ortolani L, Morandi V, De Angelis F, et al. 2012. Graphene?organic hybrids as processable, tunable platforms for pH-dependent photoemission, obtained by a new modular approach. J. Mater. Chem.. 22(35):18237. https://doi.org/10.1039/c2jm33349j

38.Liu Y, Zhou J, Zhang X, Liu Z, Wan X, Tian J, Wang T, Chen Y. 2009. Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material. Carbon. 47(13):3113-3121. https://doi.org/10.1016/j.carbon.2009.07.027

39.Saxena AP, Deepa M, Joshi AG, Bhandari S, Srivastava AK. 2011. Poly(3,4-ethylenedioxythiophene)-Ionic Liquid Functionalized Graphene/Reduced Graphene Oxide Nanostructures: Improved Conduction and Electrochromism. ACS Appl. Mater. Interfaces. 3(4):1115-1126. https://doi.org/10.1021/am101255a

40.Quintana M, Montellano A, del Rio Castillo AE, Tendeloo GV, Bittencourt C, Prato M. 2011. Selective organic functionalization of graphene bulk or graphene edges. Chem. Commun.. 47(33):9330. https://doi.org/10.1039/c1cc13254g

41.Su C, Tandiana R, Balapanuru J, Tang W, Pareek K, Nai CT, Hayashi T, Loh KP. 2015. Tandem Catalysis of Amines Using Porous Graphene Oxide. J. Am. Chem. Soc.. 137(2):685-690. https://doi.org/10.1021/ja512470t

42.He S, Song B, Li D, Zhu C, Qi W, Wen Y, Wang L, Song S, Fang H, Fan C. 2010. A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis. Adv. Funct. Mater.. 20(3):453-459. https://doi.org/10.1002/adfm.200901639

43.Patil AJ, Vickery JL, Scott TB, Mann S. 2009. Aqueous Stabilization and Self-Assembly of Graphene Sheets into Layered Bio-Nanocomposites using DNA. Adv. Mater.. 21(31):3159-3164. https://doi.org/10.1002/adma.200803633

44.Yang H, Withers F, Gebremedhn E, Lewis E, Britnell L, Felten A, Palermo V, Haigh S, Beljonne D, Casiraghi C. Dielectric nanosheets made by liquid-phase exfoliation in water and their use in graphene-based electronics. 2D Mater.. 1(1):011012. https://doi.org/10.1088/2053-1583/1/1/011012

45.Schlierf A, Cha K, Georg Schwab M, Samor? P, Palermo V. Exfoliation of graphene with an industrial dye: teaching an old dog new tricks. 2D Mater.. 1(3):035006. https://doi.org/10.1088/2053-1583/1/3/035006

46.Sinitskii A, Dimiev A, Corley DA, Fursina AA, Kosynkin DV, Tour JM. 2010. Kinetics of Diazonium Functionalization of Chemically Converted Graphene Nanoribbons. ACS Nano. 4(4):1949-1954. https://doi.org/10.1021/nn901899j

47.Niyogi S, Bekyarova E, Itkis ME, Zhang H, Shepperd K, Hicks J, Sprinkle M, Berger C, Lau CN, deHeer WA, et al. 2010. Spectroscopy of Covalently Functionalized Graphene. Nano Lett.. 10(10):4061-4066. https://doi.org/10.1021/nl1021128

48.Coletti C, Riedl C, Lee DS, Krauss B, Patthey L, von Klitzing K, Smet JH, Starke U. Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping. Phys. Rev. B. 81(23): https://doi.org/10.1103/physrevb.81.235401

49.Zhang Y, Zhou K, Xie K, Zeng J, Zhang H, Peng Y. 2010. Tuning the electronic structure and transport properties of graphene by noncovalent functionalization: effects of organic donor, acceptor and metal atoms. Nanotechnology. 21(6):065201. https://doi.org/10.1088/0957-4484/21/6/065201

50.Dong X, Fu D, Fang W, Shi Y, Chen P, Li L. 2009. Doping Single-Layer Graphene with Aromatic Molecules. Small. 5(12):1422-1426. https://doi.org/10.1002/smll.200801711

51.Melucci M, Treossi E, Ortolani L, Giambastiani G, Morandi V, Klar P, Casiraghi C, Samorì P, Palermo V. 2010. Facile covalent functionalization of graphene oxide using microwaves: bottom-up development of functional graphitic materials. J. Mater. Chem.. 20(41):9052. https://doi.org/10.1039/c0jm01242d

52.Treossi E, Melucci M, Liscio A, Gazzano M, Samori? P, Palermo V. 2009. High-Contrast Visualization of Graphene Oxide on Dye-Sensitized Glass, Quartz, and Silicon by Fluorescence Quenching. J. Am. Chem. Soc.. 131(43):15576-15577. https://doi.org/10.1021/ja9055382

53.Kim J, Cote LJ, Kim F, Huang J. 2010. Visualizing Graphene Based Sheets by Fluorescence Quenching Microscopy. J. Am. Chem. Soc.. 132(1):260-267. https://doi.org/10.1021/ja906730d

54.Gaudreau L, Tielrooij KJ, Prawiroatmodjo GEDK, Osmond J, de Abajo FJG, Koppens FHL. 2013. Universal Distance-Scaling of Nonradiative Energy Transfer to Graphene. Nano Lett.. 13(5):2030-2035. https://doi.org/10.1021/nl400176b

55.Ciesielski A, Haar S, El? Gemayel M, Yang H, Clough J, Melinte G, Gobbi M, Orgiu E, Nardi MV, Ligorio G, et al. 2014. Harnessing the Liquid-Phase Exfoliation of Graphene Using Aliphatic Compounds: A Supramolecular Approach. Angew. Chem. Int. Ed.. 53(39):10355-10361. https://doi.org/10.1002/anie.201402696

56.El Gemayel M, Haar S, Liscio F, Schlierf A, Melinte G, Milita S, Ersen O, Ciesielski A, Palermo V, Samorì P. 2014. Leveraging the Ambipolar Transport in Polymeric Field-Effect Transistors via Blending with Liquid-Phase Exfoliated Graphene. Adv. Mater.. 26(28):4814-4819. https://doi.org/10.1002/adma.201400895

上海阿拉丁生化科技股份有限公司 商家主页

地 址: 上海市新金桥路36号财富中心16楼

联系人: 阿博士

电 话: 400-620-6333

传 真: 021-50323701

Email:market@aladdin-e.com

相关咨询

阿拉丁®内参抗体 (2025-01-15T00:00 浏览数:2700)

【阿拉丁】抗体超值优惠:买三免一,不容错过! (2024-12-03T00:00 浏览数:8269)

【阿拉丁】蛋白质&抗体秋季特惠活动来袭! (2024-11-14T00:00 浏览数:10629)

【阿拉丁】细胞的营养“奶酪”——L-酪氨酸 (2024-10-14T00:00 浏览数:15537)

【阿拉丁】右旋糖酐:生物医学多功能多糖 (2024-09-12T00:00 浏览数:16661)

【阿拉丁】抗体应用和技术 (2024-09-06T00:00 浏览数:18022)

科研开学季,【阿拉丁】生物满赠礼! (2024-08-30T00:00 浏览数:19366)

【阿拉丁】BrdU染色方案 (2024-08-21T00:00 浏览数:19184)

【阿拉丁】细菌的外衣——脂多糖LPS (暂无发布时间 浏览数:22134)

【阿拉丁】三甲胺硼烷/硼烷三甲胺复合物 (暂无发布时间 浏览数:17418)

ADVERTISEMENT